首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   4篇
  2023年   2篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   10篇
  2013年   9篇
  2012年   20篇
  2011年   12篇
  2010年   9篇
  2009年   8篇
  2008年   5篇
  2007年   5篇
  2006年   8篇
  2005年   6篇
  2004年   7篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  1999年   2篇
  1997年   2篇
  1995年   1篇
  1992年   3篇
  1991年   8篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   4篇
  1968年   2篇
  1965年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
101.
A new gelatinous matrix is reported, having intermediate properties between those of polyacrylamide and agarose gels. The matrix has the unique property of being amphiphilic, i.e. of swelling in both plain water and polar organic solvents, and seems particularly well suited for electrophoresis of DNA. The compatibility with organic solvents includes 50% dimethyl sulphoxide, 50% tetramethyl urea, 50% acetonitrile and 50% tetrahydrofuran, the latter having a dielectric constant of 20. The matrix is hypothesized to consist of brush-like pillars, having a hydrophobic core and a hydrophilic coating. The latter is formed by short chains protruding in the surrounding liquid and able to coordinate large amounts of water.  相似文献   
102.
According to the Darwinian perspective, facial expressions of emotions evolved to quickly communicate emotional states and would serve adaptive functions that promote social interactions. Embodied cognition theories suggest that we understand others' emotions by reproducing the perceived expression in our own facial musculature (facial mimicry) and the mere observation of a facial expression can evoke the corresponding emotion in the perceivers. Consequently, the inability to form facial expressions would affect the experience of emotional understanding. In this review, we aimed at providing account on the link between the lack of emotion production and the mechanisms of emotion processing. We address this issue by taking into account Moebius syndrome, a rare neurological disorder that primarily affects the muscles controlling facial expressions. Individuals with Moebius syndrome are born with facial paralysis and inability to form facial expressions. This makes them the ideal population to study whether facial mimicry is necessary for emotion understanding. Here, we discuss behavioral ambiguous/mixed results on emotion recognition deficits in Moebius syndrome suggesting the need to investigate further aspects of emotional processing such as the physiological responses associated with the emotional experience during developmental age.  相似文献   
103.
Aim Amphibians are a model group for studies of the biogeographical origins of salt‐intolerant taxa on oceanic islands. We used the Gulf of Guinea islands to explore the biogeographical origins of island endemism of one species of frog, and used this to gain insights into potential colonization mechanisms. Location São Tomé and Príncipe, two of the four major islands in the Gulf of Guinea, West Africa, are truly oceanic and have an exceptionally high biodiversity. Methods Mitochondrial DNA is used to test the endemic status of a frog from São Tomé and compare it with congeneric taxa from tropical Africa. Existing data on surface currents, surface salinity, atmospheric circulation and bird migration in the Gulf of Guinea are summarized to address hypotheses concerning colonization mechanisms. Results The endemic status of Ptychadena newtoni (Bocage) is supported here by mitochondrial DNA sequences, and analysis of this and other molecular data indicates that an East African species close to Ptychadena mascareniensis (Duméril and Bibron) is its nearest relative. We refute the possibility that this population was anthropogenically introduced, in favour of a natural dispersal mechanism. Main conclusions With six endemic frogs and one caecilian, the Gulf of Guinea islands harbour a diverse amphibian fauna. Five of these species appear to have their closest relatives in East Africa. Insufficient evidence exists for transportation by storms, birds or rafts alone. However, we propose a synergy of rafting, favourable surface currents and a reduction in salinity of surface waters. Catastrophic events, or wet periods in climatic history, could allow freshwater paths to open far enough to enable continental flora and fauna to reach these and other isolated oceanic islands.  相似文献   
104.
The majority of individuals in the chronic phase of Chagas disease are asymptomatic (indeterminate form, IF). Each year, ∼3% of them develop lesions in the heart or gastrointestinal tract. Cardiomyopathy (CCHD) is the most severe manifestation of Chagas disease. The factors that determine the outcome of the infection are unknown, but certainly depend on complex interactions amongst the genetic make-up of the parasite, the host immunogenetic background and environment. In a previous study we verified that the maxicircle gene NADH dehydrogenase (mitochondrial complex I) subunit 7 (ND7) from IF isolates had a 455 bp deletion compared with the wild type (WT) ND7 gene from CCHD strains. We proposed that ND7 could constitute a valuable target for PCR assays in the differential diagnosis of the infective strain. In the present study we evaluated this hypothesis by examination of ND7 structure in parasites from 75 patients with defined pathologies, from Southeast Brazil. We also analysed the structure of additional mitochondrial genes (ND4/CR4, COIII and COII) since the maxicircle is used for clustering Trypanosoma cruzi strains into three clades/haplogroups. We conclude that maxicircle genes do not discriminate parasite populations which induce IF or CCHD forms. Interestingly, the great majority of the analysed isolates belong to T. cruzi II (discrete typing unit, (DTU) IIb) genotype. This scenario is at variance with the prevalence of hybrid (DTU IId) human isolates in Bolivia, Chile and Argentina. The distribution of WT and deleted ND7 and ND4 genes in T. cruzi strains suggests that mutations in the two genes occurred in different ancestrals in the T. cruzi II cluster, allowing the identification of at least three mitochondrial sub-lineages within this group. The observation that T. cruzi strains accumulate mutations in several genes coding for complex I subunits favours the hypothesis that complex I may have a limited activity in this parasite.  相似文献   
105.
Stylosanthes species are important forage legumes in tropical and subtropical areas. S. macrocephala and S. capitata germplasm collections that consist of 134 and 192 accessions, respectively, are maintained at the Brazilian Agricultural Research Corporation Cerrados (Embrapa-Cerrados). Polymorphic microsatellite markers were used to assess genetic diversity and population structure with the aim to assemble a core collection. The mean values of HO and HE for S. macrocephala were 0.08 and 0.36, respectively, whereas the means for S. capitata were 0.48 and 0.50, respectively. Roger’s genetic distance varied from 0 to 0.83 for S. macrocephala and from 0 to 0.85 for S. capitata. Analysis with STRUCTURE software distinguished five groups among the S. macrocephala accessions and four groups among those of S. capitata. Nei’s genetic diversity was 27% in S. macrocephala and 11% in S. capitata. Core collections were assembled for both species. For S. macrocephala, all of the allelic diversity was represented by 23 accessions, whereas only 13 accessions were necessary to represent all allelic diversity for S. capitata. The data presented herein evidence the population structure present in the Embrapa-Cerrados germplasm collections of S. macrocephala and S. capitata, which may be useful for breeding programs and germplasm conservation.  相似文献   
106.
107.
This study sought to determine the effect of inaccuracies in body segment parameters and modeling assumptions on the estimate of antero-posterior center of mass (COM) trajectory. Four different methods, one based on segmental kinematics, and three methods based on kinetic recordings were compared via simulation. Kinematic patterns (quiet stance, ankle-related sway, hip-ankle-related sway, sit-up and sit-up-sit-down) were tested with a 2D four-link model of the body and the ground reaction force vector was obtained by inverse dynamics. Errors in the estimation of body segment parameters were simulated by applying a +/-10% variation to one or more parameters at a time. These errors propagated differently to the COM estimated location between methods, between parameters within the same method, and between tasks. The kinematics-based method was the most sensitive to body segment parameters, with special regards to segment lengths and head-arms-trunk parameters. Root mean square error between estimated and simulated COM location reached 19mm in balance-related tasks and 38.3mm in sit-up-sit-down. The kinetics-based methods were largely less sensitive to inaccuracies in body segment parameters. In particular, the technique proposed by Zatsiorsky and King (J. Biomech. 31 (1998) 161), was completely insensitive to segment parameters. On the other hand the kinetics-based methods showed an intrinsic estimation error, due to the underlying model assumptions. The methods based on the double integration of horizontal force had better outcomes with tasks challenging such assumptions, with a maximal error in COM location of 15mm in the sit-up-sit-down. The method proposed by Shimba (J. Biomech. 17 (1984) 53) showed the best trade-off between sensitivity to body segment parameters and estimation performances given the ideal test conditions.  相似文献   
108.

Background

Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages) and non-professional (epithelial) phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear.

Methodology/Principal Finding

In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion.

Conclusion/Significance

Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of lysosomes are available in the cell and that cholesterol depletion may modulate the fusion of pre-docked lysosomes at the cell cortex.  相似文献   
109.
Trypanosoma cruzi, the etiological agent of Chagas disease, is a polymorphic species. Evidence suggests that the majority of the T. cruzi populations isolated from afflicted humans, reservoir animals, or vectors are multiclonal. However, the extent and the complexity of multiclonality remain to be established, since aneuploidy cannot be excluded and current conventional cloning methods cannot identify all the representative clones in an infection. To answer this question, we adapted a methodology originally described for analyzing single spermatozoids, to isolate and study single T. cruzi parasites. Accordingly, the cloning apparatus of a Fluorescence-Activated Cell Sorter (FACS) was used to sort single T. cruzi cells directly into 96-wells microplates. Cells were then genotyped using two polymorphic genomic markers and four microsatellite loci. We validated this methodology by testing four T. cruzi populations: one control artificial mixture composed of two monoclonal populations--Silvio X10 cl1 (TcI) and Esmeraldo cl3 (TcII)--and three naturally occurring strains, one isolated from a vector (A316A R7) and two others derived from the first reported human case of Chagas disease. Using this innovative approach, we were able to successfully describe the whole complexity of these natural strains, revealing their multiclonal status. In addition, our results demonstrate that these T. cruzi populations are formed of more clones than originally expected. The method also permitted estimating of the proportion of each subpopulation of the tested strains. The single-cell genotyping approach allowed analysis of intrapopulation diversity at a level of detail not achieved previously, and may thus improve our comprehension of population structure and dynamics of T. cruzi. Finally, this methodology is capable to settle once and for all controversies on the issue of multiclonality.  相似文献   
110.

Background

In the mid 20th century, Ernst Mayr and Theodosius Dobzhansky championed the significance of circular overlaps or ring species as the perfect demonstration of speciation, yet in the over 50 years since, only a handful of such taxa are known. We developed a topographic model to evaluate whether the geographic barriers that favor processes leading to ring species are common or rare, and to predict where other candidate ring barriers might be found.

Results

Of the 952,147 geographic barriers identified on the planet, only about 1% are topographically similar to barriers associated with known ring taxa, with most of the likely candidates occurring in under-studied parts of the world (for example, marine environments, tropical latitudes). Predicted barriers separate into two distinct categories: (i) single cohesive barriers (< 50,000 km2), associated with taxa that differentiate at smaller spatial scales (salamander: Ensatina eschscholtzii; tree: Acacia karroo); and (ii) composite barriers - formed by groups of barriers (each 184,000 to 1.7 million km2) in close geographic proximity (totaling 1.9 to 2.3 million km2) - associated with taxa that differentiate at larger spatial scales (birds: Phylloscopus trochiloides and Larus (sp. argentatus and fuscus)). When evaluated globally, we find a large number of cohesive barriers that are topographically similar to those associated with known ring taxa. Yet, compared to cohesive barriers, an order of magnitude fewer composite barriers are similar to those that favor ring divergence in species with higher dispersal.

Conclusions

While these findings confirm that the topographic conditions that favor evolutionary processes leading to ring speciation are, in fact, rare, they also suggest that many understudied natural systems could provide valuable demonstrations of continuous divergence towards the formation of new species. Distinct advantages of the model are that it (i) requires no a priori information on the relative importance of features that define barriers, (ii) can be replicated using any kind of continuously distributed environmental variable, and (iii) generates spatially explicit hypotheses of geographic species formation. The methods developed here - combined with study of the geographical ecology and genetics of taxa in their environments - should enable recognition of ring species phenomena throughout the world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号